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Abstract. The Wood-Kirkwood equations model Z N D  detonation waves in cylindrical 
geometry where the flow is restricted to the central stream tube. The entire class of 
self-similar solutions is obtained and in a special limit the governing equations are reduced 
to a single first-order non-linear equation. Solutions are obtained in the case in which the 
radial divergence of the flow is constant. 

1. Introduction 

One-dimensional Z N D  (Zeldovich-von Neumann-Doering) detonation waves have 
been discussed extensively in the literature (see Fickett and Davis 1979). Here we take 
into account two-dimensional effects and derive the class of self-similar motions in 
the Wood and Kirkwood (1954) model of slightly divergent flows, where the flow is 
restricted to a region near the axis of a cylindrical medium. One feature of this model 
is the coupling between the curvature of the reaction front and the divergence of the 
flow in the radial direction. The boundary effects caused by the walls of the cylinder 
enter only indirectly through a divergence term in the mass conservation equation. A 
perturbation solution about a planar shock front which couples directly to the boundary 
conditions has been obtained by Bdzil (1981) and Bdzil and Stewart (1986) in the case 
where the chemistry rapidly goes to completion. Similarity solutions for reacting flows 
have been discussed by several authors (e.g., Sternberg 1970, Cowperthwaite 1979, 
Logan and Perez 1980, Logan and Bdzil 1982, Holm and Logan 1983, Gardner 1983). 
Within the Wood-Kirkwood model the solution we obtain in this work will give insight 
into the nature of the coupling between the chemical reaction, shock curvature and 
radial divergence of the hydrodynamic flow. 

2. The Wood-Kirkwood model 

We consider a reactive medium in a quiescient state into which a shock is propagating. 
The shock initiates an irreversible chemical reaction A +  B with reaction progress 
variable A which measures the mass fraction of B. The reactive flow behind the shock 
is compressible, adiabatic and inviscid. By adiabatic we mean there is no heat flow 
between fluid elements; generally, in detonations, the hydrodynamic timescale is much 
faster than the timescale for heat conduction. Geometrically, the medium is a semi- 
infinitely long cylinder of finite radius into which we introduce a system of Eulerian 
coordinates with the z axis along the axis of the cylinder and r the radial distance 
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from the axis, The origin of the z axis is the position at which a piston impacts the 
medium at time t = 0. Behind the shock the governing equations are, in cylindrical 
symmetry, 

pI + up. + wp, + p u ,  + p w , + p w / r  = 0 

pu ,  + puu, + pwu, + p ;  = 0 

pw, + puw, + pww, + p r  = 0 

P I +  up.+wpr - ( Y P l P ) ( P , +  UP2 +UP, )  = ( Y -  l ) q p Q ( A ,  P, P )  

A ,  + uA, + wA, = Q(A,  P, P )  

( 1 )  

( 2 )  

(3) 

(4) 

( 5 )  

where p, p ,  U and w are the density, pressure, particle velocity in the z direction and 
particle velocity in the r direction, respectively. These equations are the usual conserva- 
tion equations with ( 5 )  being the species equation with reaction rate Q depending on 
A, p and p. This particular form of the energy equation (4) follows from the energy 
law De/Dt = -pD( l /p) /Dt  along with the assumption that the reactant-product 
mixture obeys the equation of state 

e = e, - A q  + P/ P (  Y - 1 ) 

where e, is a constant and q is the specific heat of reaction (see Fickett and Davis 1979). 
Following Wood and Kirkwood (1954) we specialise (1)-(5) to the axis or central 

stream tube. By symmetry 

l imw=O lim p r  = 0 
r - 0  r - 0  

and from the definition of derivative 

0 

r - o  r 
lim - = U,. 

Hence, on the axis the governing equations become 

PI + up, +pu,  +2pw, = 0 

U1 + uuz + ( 1/ P)Pz = 0 

PI + up2 - (YP/P) (PI+  UP, )  = ( Y  - l)qpQ(A, P, P )  

A I  + UA. = Q ( A ,  P, P ) .  

(6) 

( 7 )  

( 8 )  

(9) 

The function w,, the divergence of flow in the radial direction, is a function of t and 
z and is not known. We treat w,  as a constitutive function which contains information 
concerning the boundary effects from the cylindrical walls. Generally, we assume 

(10) 

From the analysis we shall show that w ,  and Q must satisfy additional partial differential 
equations which permit their characterisation up to arbitrary functions. 

As the shock propagates into the medium the Rankine-Hugoniot jump conditions 
apply across the shock front. At the axis those conditions are, assuming the strong 
shock condition, 

( 1 1 )  

a, = ~ ( u ,  A, P ) .  

- L  D = $( y + l ) U ,  PI = ( Y  + I ) / ( Y  - 1)Po I - * P o ( Y + l ) u :  

e,-eo=I/(Y+l)(Pl/Po) A l - A o = O  
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where D is the shock velocity. The subscripts 0 and 1 denote states immediately in 
front of and  immediately behind the shock, respectively. In summary, the mathematical 
problem is to general solutions of the differential equations (6)-(9) subject to the 
boundary conditions ( 1 1 )  which hold along the moving shock front. No a priori 
assumption can be made concerning the back boundary or piston path. Indeed, the 
similarity solution forces a back-boundary condition that must be satisfied for such 
solutions to exist. 

3. Self-similar motions 

A standard but lengthy similarity analysis (see, e.g., Logan 1987) leads to a class of 
invariant solutions of (6)-(9) and ( 1 1 )  under a local Lie group with operator 

a a  a a a  a 
X = T - + < - + ~ - + T - - + ~ - + p - -  

a t  a z  au ap  ap a h  

where the generators are given by 

r = a t + c  < = b z + d  C#J = ( b - a ) u  

T = 2 ( b  - a ) p  x = o  p = 2 ( b - a ) A  
( 1 3 )  

where a, b, c and d are constants. For invariance the functions Q and w,  are constrained 
to satisfy the partial differential equations 

a Q  aQ 
a p  ah  

~ - - + p - =  ( 2 b - 3 a ) Q  

aw, aw, 
a h  au 

p-++-= -a+ 

The method of characteristics immediately yields 

Q = p p f ( h l p ,  P )  w,  = u 2 - = p  g ( h l u 2 ,  P )  ( 1 4 )  

p 5 ( 2 b  - 3 a ) / ( 2 b - 2 a ) .  ( 1 5 )  

where f and  g are arbitrary functions and  

The forms of Q and w,  given by (14 )  are necessary for self-similar motions of (6)-(9) 
and  ( 1 1 )  to exist. 

The similarity solution results from determining the integral curves of ( 1 2 ) .  The 
similarity variable is 

s=(c4z+1) / (C3 t+1) '2  (16) 

where c2 = b / a ,  c3 = a /  c and c4 = b /  d. The shock path occurs at s = 1 .  The form of 
the self-similar solution is 

U(?, z )  = ( q t  + 1 ) c 2 - L u , u ( s )  d t ,  z )  = p , R ( s )  
( 1 7 )  

p (  2, z )  = ( c , t +  1)2"2-L)pIP(s)  

where U, is the initial piston velocity and 

h ( t ,  ~ ) = ( c ~ t + 1 ) * ( ' 2 - ~ ' A ( s )  

PI = f [ P o ( Y +  1)Iuf Pt = (Y+ I) / (? , -  1 b O .  (18 )  
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When (17) is substituted into the partial differential equations (6)-(9) there results a 
system of ordinary differential equations for U ( s ) ,  P ( s ) ,  R ( s )  and A(s) ;  this system 
(which we do  not write down) can be integrated numerically for s 1 subject to the 
initial conditions 

U(1) = P(1)  = R ( 1 )  = 1 A ( l ) = O  (19) 

to determine the flow behind the shock, once the parameters p and c4 and the functions 
Q and w ,  are chosen (note that :( y + 1) U, = c2cJ c4 and c2 = (2p  - 3)/ (2p  - 2 ) ) .  

4. Behaviour at the shock front 

The form of the similarity solution (17) permits the calculation of various quantities 
at the shock front without knowing the flow behind. To compute the radius of curvature 
of the shock at the axis we consider the following kinematical argument. Let w ( 0 )  
and U (  e)  denote the r and z components of the velocity vector at a point on the shock 
front, where 6 is a small angle and U is the radius of curvature (see figure 1). Then 

r w ( e )  
e @,( 6 )  e - W (  e) (w  ( e )/ U ( e ) ) .  

U==-==-- 

Taking the limit as 6 + 0  gives 

U1 
U== 

% ( U ,  9 A I  9 P I ) '  

From (14) we obtain 

and so 
zg-1 1 

(20) 

Therefore, within the context of this solution the radius of curvature depends on the 
shock velocity D and the power of pressure p in the rate law. 

The qualitative features of the similarity solution can also be determined at the 
shock front. From the fact that the shock velocity is 

D = f( y + 1) U, ( c3 t + 1 ) ' ? - I  

. 
A 0 , P I )  Y + l  

Figure 1. Geometry of the shock front. 
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and the pressure at the front is 

we may draw the following conclusions based on the magnitude of the various constants. 
Six cases are distinguished. 

(ia). p > 1, c3 > 0, c4 > 0. In this case the shock is decelerating, and 0, p 1  and U 

all tend to zero as t tends to 03. A comparession wave behind the shock will increase 
in distance from the shock front. 

(ib). p > $ ,  c3<0, c,<O. Here O < c 2 < 1  and (-l /c4,  - l /c3) is a singular point. 
The shock is accelerating and both p1 and (+ are increasing to 03 as t approaches -1, ’~~. 
A compression wave behind the shock will overtake the shock front at t = -1/c3. 

(iia). 1 < /3 <$, c3 > 0, c4<0. Since c2 < 0 the shock is decelerating to zero and 
asymptotic to the line z = - l / c 4 .  Both p 1  and U decrease along the shock. 

(iib). 1 < p < 1, c3 < 0, c4 > 0. The shock is accelerating and asymptotic to t = - l / c3 .  
Along the shock p1 and w are increasing and compression waves behind the shock 
will overtake the shock as t + CO. 

(iiia). /3 < 1, c3 > 0, c4> 0. Here c 2 >  1 and the shock is accelerating. p1 is increasing 
and U is decreasing along the shock. Compression waves behind the shock will fall 
further behind. 

(iiib). p < 1, c3 < 0, c4<0. The shock is decelerating to zero as t + - l /c3.  The 
pressure p 1  decreases to zero and U increases to CO. 

Several investigators (see, e.g., Kanel’ and Dremin (1977)) have noticed that during 
the initiation stage many highly reactive materials have the property that the accelerating 
lead shock is overtaken from behind by a compression wave. This suggests that (ib) 
or (iib) is a possible model for detonation initiation. In the three where the shock is 
decelerating the solution will become invalid when the strong shock conditions cease 
to be a valid approximation. 

5. A distinguished limit 

A numerical integration of the ordinary differential equations resulting from the 
similarity analysis is always possible. However, one might ask under what assumptions 
can analytical progress be made. In the case of constant divergence of flow, a reaction 
rate proportional to the internal energy, and in the limit as p + 1+ the problem simplifies 
greatly. In this case the similarity variable (16) becomes 

(21) s = (c4z+ 1) exp[-f(y+ 1)u,c4t] 

U = u , i r ( s )  exp[+(y+ ~)u,c,t]  

and the form of self-similar motions is 

P = P I R ( S )  
(22) 

P = P , ~ ( s )  exp[ (y+ l )w4 t l  A = A ( s )  exp[(y+l)u,c,t]. 

Taking U =  f i - i ( y + l ) s  and 

g ( A /  uf 02, pIR) = R f ( A / p , P ,  p,R) = k / [ ( r +  1)Rp,l 

where R is a constant divergence rate and k is a rate constant for the chemical reaction, 
the partial differential equations (6)-(9) reduce to the system of ordinary differential 
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equations for 0 < s < 1 : 

U' R '  v -+-= -- 
U R  U 

s y - 1  1 P' 
- 0  U'  

U U (';')*U2 2 U 2 R  
- + ( y + l ) - +  - 

P' R' p -_  YR=-E 
A' y + l  P -+-- -9- A U  R A U  

where 

Y + l  2R p z y + l - - -  Y-1 9k Plk 
9 =  v=- +- 

2 uic4 Y s l  '1'4 ( 7  + )PluIc4 

and initial conditions are given at the shock front by 

R ( l )  = P ( l )  = 1 U(1) =+(1-  y)  A(l)=O. (27) 
In (23)-(26) we observe the appearance of three dimensionless numbers v, p and 7. 
The quantity 9 is the ratio of the energy of the hydrodynamic flow to the energy 
released by the chemical reaction. We can write v = f( y + 1) + m, and p = y + 1 - m2 
where m 1  and m, are positive dimensionless modelling numbers which measure the 
ratio of the radial divergence of the flow to the normal velocity, and  the ratio of the 
hydrodynamic and chemical timescales, respectively. The number cy '  is a length scale 
for the problem. Equations (23)  and (25) may be integrated immediately; letting 

we obtain 

and 

P = R y I *  

which give R and P directly in terms of U and integrals of U. The species equation 
(26) is linear in A and may be solved easily in terms of U. Thus it remains to determine 
a single equation for U. To this end we introduce the sound speed C defined by 
C' = yP/ R. Clearly 

R'  P' C' 
- 2- 

R P  C 
_ _ _ _  

and substituting this expression into (23) and (25) and then subtracting gives 

C' U' v ( 1 - y ) - p  
C U U .  

2-+(y-1)-= 

Using (30) to eliminate P ' /R from (24) gives 
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It is straightforward but tedious to use ( 3  1) along with the definition of C to eliminate 
C from (32) and thereby obtain a single non-linear differential equation for the reduced 
particle velocity U. The idea is to solve (32) for Z(s) and then logarithmically 
differentiate. 

Much insight can be gained by examining a special case. We assume that the 
system is tuned in such a way that v( 1 - y )  = g. This constraint still permits many 
reasonable configurations, and  it forces the linear relationship ( 1  - y ) m ,  + m2 = $( y +  1 ) 2  
on the modelling numbers, which are ratios of velocities and  timescales. In  this case 
(31) may be integrated directly to obtain 

U = L  l / ( Y - l )  (1  - y ) c * / “ - Y ’ *  

C = - & / U  

2Y 

If y = 3 we have 

where U satisfies the first-order equation 

U’ = ( v  - 4 u 4 -  4SU3)/( u4 - 3)  

o= u+2s R = - U-’I;” p = - u-3Z” 

U ( l ) = - l  

where U = 2 + 2R/( uic4) and 0 < s < 1. We further have 

and  the species equation becomes 

A’+4113/ U = 771 U’ 
which has solution 

(33) 

Thus the problem has been reduced to a simple integration of (33). Sketches of the 
solution are shown in figure 2 in the case v = 3, 77 = 1 .  Although the similarity solution 
exists for all s in the range 0 < s s 1,  there is a value s = so when A = 1 and the chemical 
reaction is completed; thus the self-similar motion is valid only for so< s < 1. In 
general, this motion must be connected back to the piston by a time-dependent inert 
flow which will suffer a weak discontinuity at  s = so. 

2 -  
- 
- 

- 
1 -  

- 

0 0.5 1.0 

5 

Figure 2. Graph of the self-similar particle velocity fi, pressure f, density R and progress 
variable A on 0 s  s 1 .  The behaviour of A near s = 0 is iz + +cc as s + O+. 
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